Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 497-503, 2023.
Article in Chinese | WPRIM | ID: wpr-986058

ABSTRACT

Objective: To investigate the main mechanisms of pulmonary fibrosis following silica nanoparticles (SiNPs) exposure through constructing the macrophage-fibroblast model in vitro, which simulated the process of pulmonary fibrosis. Methods: In January 2021, human mononuclear leukemia cells (THP-1) were treated with 0, 25, 50, 100 μg/ml SiNPs for 24 h. The supernatant of THP-1 cells was collected and applied to human embryonic lung fibroblast cells (MRC-5) which divided into control and low, medium and high dose groups at the logarithmic growth stage for 24 h. MRC-5 cell viability was detected by CCK8. The hydroxyproline (Hyp), interleukin 6 (IL-6), interleukin 1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) expression were detected in the supernatants of MRC-5. The changed proteins were detected by liquid-phase mass spectrometry in high dose group. GeneCard database were applied to identity the differential pulmonary fibrosis proteins in high dose group. Gene Ontology (GO) was performed to identity the key biological process in differential pulmonary fibrosis proteins of high dose group. The String database was used to construct the protein-protein interactions (PPI) network of differential pulmonary fibrosis proteins. The APP of CytoHubba was applied to calculate the key protein of differential pulmonary fibrosis proteins in PPI network. Correlation coefficients between key differential pulmonary fibrosis proteins were calculated using Pearson correlation analysis. Western blotting was applied to detect the expression of key proteins of differential pulmonary fibrosis proteins in different groups. Results: CCK8 results showed that MRC-5 cell viability was increasing in low, medium and high dose groups compared with control group (P<0.05). The expression levels of Hyp and IL-1β in different group were increased compared with control group, the expression levels of IL-6 and TNF-α were increased in high dose group compared with control group (P<0.05). GeneCard database identified 26 differential pulmonary fibrosis proteins, which were mainly involved in extracellular matrix hydrolysis, cell inflammatory response, tissue repair, cell proliferation, inflammation response by GO analysis. The APP of CytoHubba was calculated that matrix metalloproteinase 9 (MMP9) and tissue inhibitor metalloproteinase 1 (TIMP1) played an important role in PPI network. The results of correlation analysis showed that MMP9 was correlated with the expression of matrix metalloproteinase 1 (MMP1), matrix metalloproteinase 3 (MMP3), TIMP1 and epidermal growth factor receptor (EGFR) (r=0.97, 0.98, 0.94, 0.93, P<0.05). Western blotting results showed that TIMP1 protein expression was increased in low, medium and high dose groups, while MMP9 protein expression was increased only in high dose group (P<0.05) . Conclusion: Differential expression proteins related with pulmonary fibrosis in MRC-5 cells mainly regulate biological processes of extracellular matrix hydrolysis, tissue repair, and cellular inflammation response following SiNPs exposure. MMP9 and TIMP1 may be the key proteins, which affected the fibrosis process in vitro pulmonary fibrosis model.

2.
China Journal of Chinese Materia Medica ; (24): 390-398, 2023.
Article in Chinese | WPRIM | ID: wpr-970476

ABSTRACT

This study aimed to investigate the effects of nanoparticles PLGA-NPs and mesoporous silicon nanoparticles(MSNs) of different stiffness before and after combination with menthol or curcumol on the mechanical properties of bEnd.3 cells. The particle size distributions of PLGA-NPs and MSNs were measured by Malvern particle size analyzer, and the stiffness of the two nanoparticles was quantified by atomic force microscopy(AFM). The bEnd.3 cells were cultured in vitro, and the cell surface morphology, roughness, and Young's modulus were examined to characterize the roughness and stiffness of the cell surface. The changes in the mechanical properties of the cells were observed by AFM, and the structure and expression of cytoskeletal F-actin were observed by a laser-scanning confocal microscope. The results showed that both nanoparticles had good dispersion. The particle size of PLGA-NPs was(98.77±2.04) nm, the PDI was(0.140±0.030), and Young's modulus value was(104.717±8.475) MPa. The particle size of MSNs was(97.47±3.92) nm, the PDI was(0.380±0.016), and Young's modulus value was(306.019±8.822) MPa. The stiffness of PLGA-NPs was significantly lower than that of MSNs. After bEnd.3 cells were treated by PLGA-NPs and MSNs separately, the cells showed fine pores on the cell surface, increased roughness, decreased Young's modulus, blurred and broken F-actin bands, and reduced mean gray value. Compared with PLGA-NPs alone, PLGA-NPs combined with menthol or curcumol could allow deepened and densely distributed surface pores of bEnd.3 cells, increase roughness, reduce Young's modulus, aggravate F-actin band breakage, and diminish mean gray value. Compared with MSNs alone, MSNs combined with menthol could allow deepened and densely distributed surface pores of bEnd.3 cells, increase roughness, reduce Young's modulus, aggravate F-actin band breakage, and diminish mean gray value, while no significant difference was observed in combination with curcumol. Therefore, it is inferred that the aromatic components can increase the intracellular uptake and transport of nanoparticles by altering the biomechanical properties of bEnd.3 cells.


Subject(s)
Animals , Mice , Menthol/pharmacology , Actins/metabolism , Endothelial Cells/metabolism , Nanoparticles/chemistry
3.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 178-184, 2022.
Article in Chinese | WPRIM | ID: wpr-907001

ABSTRACT

Objective@#The antibacterial properties and bonding strength of 3M orthodontic adhesive resin modified by chlorhexidine acetate (CHA) composite mesoporous silica were investigated.@*Methods@# CHA with different mass fractions was encapsulated in mesoporous silica nanoparticles (MSNs) (denoted CHA@MSNs). Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used to characterize the samples. The 3M Z350XT flow resin was divided into 4 groups: group A: 3M+CHA@MSNs (0%); group B: 3M+CHA@MSNs (3%); group C: 3M+CHA@MSNs (5%); and group D: 3M+CHA@MSNs (6.4%), with mass scores of 0%, 3%, 5%, and 6.4%, respectively. The shear strength of the modified adhesive was tested by a universal electronic material testing machine, the adhesive residue was observed by a 10 × magnifying glass, and the adhesive Remnant index (ARI) was calculated. The four groups of modified adhesives were cultured with Streptococcus mutans. The OD540 value of the bacterial solution was measured by a spectrophotometer, and the amount of plaque attachment was observed by scanning electron microscopy to evaluate the antibacterial performance of the adhesives.@*Results@#Infrared spectroscopic analysis of CHA@MSNs showed that CHA was successfully loaded onto MSNs. Under scanning electron microscopy, it could be seen that, after Cha was combined with MSNs, the structure of MSNs changed, as the boundary was fuzzy and aggregated into a layered structure. A comparison of shear strength revealed a statistically significant difference between the groups containing CHA@MSNs and the groups without CHA@MSNs (P<0.05). The value of the shear strength in group D decreased the most, while there was no statistically significant difference between group B and group C (P > 0.05). There was no statistical significance across all groups (P > 0.05), suggesting that the addition of CHA@MSNs had little effect on the bracket shedding. The OD540 value of bacterial fluid indicated that the difference among groups A, B and C was statistically significant (P < 0.05), and the antibacterial effect of group C was the best; there was no statistically significant difference between group C and group D (P > 0.05).@*Conclusions@#Therefore, adding 5% CHA@MSN antibacterial agent significantly improved the antibacterial effect and did not affect the bond strength.

4.
Acta Pharmaceutica Sinica B ; (6): 2934-2949, 2022.
Article in English | WPRIM | ID: wpr-939931

ABSTRACT

Photothermal therapy has been intensively investigated for treating cancer in recent years. However, the long-term therapeutic outcome remains unsatisfying due to the frequently occurred metastasis and recurrence. To address this challenge, immunotherapy has been combined with photothermal therapy to activate anti-tumor immunity and relieve the immunosuppressive microenvironment within tumor sites. Here, we engineered silica-based core‒shell nanoparticles (JQ-1@PSNs-R), in which silica cores were coated with the photothermal agent polydopamine, and a bromodomain-containing protein 4 (BRD4) inhibitor JQ-1 was loaded in the polydopamine layer to combine photothermal and immune therapy for tumor elimination. Importantly, to improve the therapeutic effect, we increased the surface roughness of the nanoparticles by hydrofluoric acid (HF) etching during the fabrication process, and found that the internalization of JQ-1@PSNs-R was significantly improved, leading to a strengthened photothermal killing effect as well as the increased intracellular delivery of JQ-1. In the animal studies, the multifunctional nanoparticles with rough surfaces effectively eradicated melanoma via photothermal therapy, successfully activated tumor-specific immune responses against residual tumor cells, and further prevented tumor metastasis and recurrence. Our results indicated that JQ-1@PSNs-R could serve as an innovative and effective strategy for combined cancer therapy.

5.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 306-313, 2021.
Article in Chinese | WPRIM | ID: wpr-873652

ABSTRACT

Objective @#To fabricate a co-delivery system of curcumin (CUR) and siRNA based on mesoporous silica nanoparticles (MSN) and investigate its potential application in inducing macrophage M2 polarization.@*Methods@# MSNs were synthesized using the conventional sol-gel method. The interior mesochannels were occupied by small-molecule CUR, while the exterior surface was adsorbed by cationic polymeric polyethyleneimine (PEI) to link the negatively charged siRNA molecules to formulate the (CUR@MSN)PEI/siRNA co-delivery system. The formulation process was monitored by transmission electron microscopy(TEM). The MTT assay was used to evaluate the cytotoxicity in RAW264.7 cells under various concentrations of nanoparticles. Confocal laser scanning microscopy and TEM were used to observe cell internalization using FAM-labeled siRNA. GAPDH-targeting siRNA was used to prepare nanoparticles and then was transfected into RAW264.7 cells to observe the silencing efficiency of target genes. The knockdown efficiency was examined by real-time quantitative PCR. The related control groups were untreated cells, CUR delivery only and the co-delivery of CUR and siRNA negative control. By loading miRNA-130a-3p antisense oligonucleotide (ASO) to transfect RAW264.7 cells, the effects on the polarization of macrophages were observed. The M2 polarization marker arginase 1 (Arg-1) was measured by western blotting. The related control groups were untreated cells, CUR delivery only and co-delivery of CUR and miRNA negative control. @* Results @# The (CUR@MSN)PEI/siRNA co-delivery system was successfully formulated. The nanoparticles exhibited dose-dependent cytotoxicity, and the cell viability was maintained over 90% when the nanoparticle concentration was less than 10 μg/mL. A high cell uptake efficiency was observed, and the target gene knockdown efficiency was greater than 80% (P < 0.05 vs. all the other groups). The CUR delivery-only group and co-delivery of the CUR-and miRNA-negative control group improved Arg-1 expression ~ 3-fold (P < 0.05 vs. untreated cells). Using the co-delivery of CUR and ASO, synergistic effects were obtained, and Arg-1 expression was increased ~ 8-fold (P < 0.05 vs. all the other groups).@*Conclusion @#The CUR-siRNA co-delivery system can effectively transfect macrophages and synergistically induce M2 polarization.

6.
Article | IMSEAR | ID: sea-215895

ABSTRACT

Silica based nanoparticles are used in various fields of medical sciences to diagnose, control disease, for genetic disorders, owing to their size, surface area, biocompatibility and low toxicity. In dentistry, silica nanoparticles have been used as dental filler, teeth whitening agent but limited evidence is there regarding antimicrobial activity against oral pathogens. Therefore, the current study was conducted to assess the anti-bacterial activity of mouthwash incorporated with silica nanoparticles against oral pathogens. Tetraethoxysilane, ammonium hydroxide, absolute ethanol were used and centrifuged to obtain the silica nanoparticle pellet. XRD analysis was done to confirm the characterization of the thus obtained silica nanoparticle. The mouthwash was prepared with the synthesized silica nanoparticle as the main constituent. Agar well diffusion method was used to assess the antimicrobial activity against S. mutans, S. aureus and E. faecalis. The XRD analysis confirmed the amorphous nature of the synthesized silica nanoparticles.The zone of inhibition was found to increase as the concentrations increased mainly for S. aureus and E. faecalis. The synthesized nanoparticles incorporated mouthwash showed good potential as antimicrobial agents against strains of gram positive bacteria. Further animal studies/in vivo research should be conducted to validate the above findings

7.
Chinese Pharmaceutical Journal ; (24): 367-374, 2020.
Article in Chinese | WPRIM | ID: wpr-857766

ABSTRACT

OBJECTIVE: To construct a biomimetic delivery system (U251/MSN-DOX), and assess its application of glioma targeted therapy. METHODS: U251 cell membrane was coated on the surface of mesoporous silica nanoparticles(MSN) by co-extrusion to prepare cell membrane biomimetic nanoparticles U251/MSN-DOX. The particle size, potential and morphology were characterized. The physical characteristics, loading content (LC) and encapsulation efficiency (EE) of these nanoparticles were determined. Their toxicity of normal cells was investigated. Their cellular uptake of different formulations in U251 was studied by flow cytometry and fluorescence confocal microscope. Additionally, we assessed the transmembrane transport efficiency of nanoparticles via in vitro BBB. RESULTS: The cell membrane-coated nanoparticles U251/MSN were spherical, and a distinct "core-shell" structure could be observed. The particle size was (135.70±3.85) nm, the LC was (18.57±2.17)%, and the EE was (64.99±2.52)%. The cell experiment showed that U251/MSN had low cytotoxicity and U251/MSN-DOX exhibited stronger cellular uptake ability and BBB transporting efficiency. CONCLUSION: The glioma cell membrane can be coated on the surface of MSN to construct biomimetic nanoparticles U251/MSN. The biomimetic nanoparticles not only are capable of targeting the homologous tumor cells, but also show the enhanced ability to penetrate BBB, which indicate potential applications in the field of tumor targeted drug delivery especially in brain tumor.

8.
Journal of Medical Postgraduates ; (12): 220-224, 2020.
Article in Chinese | WPRIM | ID: wpr-818407

ABSTRACT

Silica Nanoparticles (SiNPs) is widely used in many fields including antibacterial agent, molecular probe and drug delivery forits special physicochemical properties. Recently, the biosecurity of nano-materials has become a hot spot of research in toxicology due to special structure and functional activeness of nano-materials. This paper briefly summarized recent researchreports at home and abroadto review the toxicity of SiNPs on cells and animals, the factors for influencing the toxicity of SiNPs and the mechanisms underlying SiNPs biotoxicity, aiming to provide references for the development, application and biosecurity of SiNPs.

9.
J. appl. oral sci ; 28: e20200131, 2020. tab, graf
Article in English | LILACS, BBO | ID: biblio-1134780

ABSTRACT

Abstract Objective There is increasingly common the consumption more times a day of foods and acidic drinks in the diet of the population. The present study aimed to evaluate and compare the effects of a calcium mesoporous silica nanoparticle single application of other calcium and/or fluoride products in reducing the progression of dental erosion. Methodology Half of the eroded area was covered of 60 blocks of enamel, after which the block was submitted to the following treatments: (Ca2+-MSN), casein phosphopeptide-amorphous calcium phosphate (CPP-ACP); CPP-ACP/F-(900 ppm F−); titanium tetrafluoride (TiF4 1%) (positive control); sodium fluoride (NaF 1.36%) (positive control); and Milli-Q® water (negative control) before being submitted to a second erosive challenge. A surface analysis was performed via a three-dimensional (3D) noncontact optical profilometry to assess the volumetric roughness (Sa) and tooth structure loss (TSL) and and through scanning electron microscopy (MEV). An analysis of variance (ANOVA) and Tukey's test were performed. Results Regarding Sa, all experimental groups exhibited less roughness than the control (p<0.05). The TSL analysis revealed that the Ca2+-MSN and NaF groups were similar (p>0.05) and more effective in minimizing tooth loss compared with the other groups (p<0.05). Conclusions The Ca2+-MSN and NaF treatments were superior compared with the others and the negative control.


Subject(s)
Humans , Tooth Erosion , Tooth Remineralization , Nanoparticles , Sodium Fluoride , Caseins , Calcium , Silicon Dioxide , Fluorides
10.
Chinese Journal of Cancer Biotherapy ; (6): 1083-1088, 2019.
Article in Chinese | WPRIM | ID: wpr-793229

ABSTRACT

@#Objective: To construct indocyanine green-loaded silica nanoparticles (ICG@MSNs) and evaluate their killing effect on cervical cancer HeLa cells. Methods: Mesoporous silica nanoparticles (MSNs) were synthesized by template method, and indocyanine green (ICG) containing photothermal agent was loaded to prepare ICG@MSNs with photothermal effect, which were applied in the research of HeLa cells in vitro. Results: The particle of ICG@MSNs was uniform and in regular spherical shape with the size about 200 nm. ICG@MSNs was similar photothermal effect with pure ICG. Cell endocytosis experiments showed that ICG encapsulated in silica nanoparticles is more likely to be endocytosed by tumor cells, and then played a photothermal role in killing cervical cancer HeLa cells. On the other hand, cytotoxicity experiments showed that under the irradiation of 808 nm laser, ICG@MSNs significantly increased cytotoxicity, which could significantly kill cervical cancer HeLa cells. Conclusion: ICG@MSNs has good stability and biocompatibility, as well as good thermogenesis. It’s photothermal treatment effect on tumor is obvious, which has a good prospect for the treatment of cervical cancer.

11.
International Journal of Biomedical Engineering ; (6): 66-70, 2019.
Article in Chinese | WPRIM | ID: wpr-743006

ABSTRACT

In recent years, mesoporous silica nanoparticles (MSNs) have been widely used in the construction of various intelligent drug delivery systems due to their unique and excellent properties. The stimuli-responsive drug delivery system based on mesoporous silica nanoparticles can effectively load anticancer drugs and target them to tumor cells, and then responsively release anticancer drugs under the action of specific stimulation signals. The method of specifically delivering anticancer drugs to target sites not only can greatly improvethe drug efficacy, but also effectively reduce the side effects of anticancer drugs on normal tissues and organs. Thereby the advantages of anticancer drugs in tumor therapy are improved. In this paper, the applications and developments of stimuliresponsive mesoporous silica nano drug delivery systems in tumor therapy were summarized.

12.
The Journal of Advanced Prosthodontics ; : 193-201, 2019.
Article in English | WPRIM | ID: wpr-761416

ABSTRACT

PURPOSE: The aim of the present study was to evaluate the color changes of an autopolymerizing PMMA resin used for interim fixed restorations, reinforced with SiO2 nanoparticles. MATERIALS AND METHODS: Silica nanoparticles were blended with the PMMA resin powder through high-energy ball milling. Four shades of PMMA resin were used (A3, B3, C3, D3) and total color differences were calculated through the equations ΔEab= [(ΔL*)2 + (Δa*)2 + (Δb*)2]½ and Δ E 00 = [ Δ L ′ K L S L 2 + Δ C ′ K C S C 2 + Δ H ′ K H S H 2 + R T Δ C ′ K C S C Δ H ′ K H S H ] 1 / 2 . Statistically significant differences between ΔEab and the clinically acceptable values of 3.3 and 2.7 and those between ΔE00 and the clinically acceptable value of 1.8 were evaluated with one sample t-test (P<.05). Differences among the different shades were assessed through One-Way ANOVA and Bonferroni multiple comparison tests. RESULTS: Significantly lower values were detected for all groups concerning ΔEab compared to the intraorally clinical acceptable values of 3.3 and 2.7. Significantly lower mean values were detected for groups B3, C3, and D3, concerning ΔE00 compared to the intraorally clinical acceptant value of 1.8. Color pigments in red-brown (A3) and red-grey (D3) shades affect the total color change to a greater extent after the reinforcement with SiO2 nanoparticles compared to the red-yellow (B3) shade. CONCLUSION: Within the limitations of this in vitro study, it can be suggested that reinforcing PMMA with SiO2 nanoparticles at 0.25 wt% slightly affects the optical properties of the PMMA resin without being clinically perceivable.


Subject(s)
In Vitro Techniques , Nanoparticles , Polymethyl Methacrylate , Prostheses and Implants , Silicon Dioxide
13.
Journal of Shanghai Jiaotong University(Medical Science) ; (12): 1329-1334, 2019.
Article in Chinese | WPRIM | ID: wpr-843319

ABSTRACT

Until now, great progress has been made in anti-tumor therapy. A series of novel anti-tumor drugs, such as molecular targeted drugs and monoclonal antibodies, have been emerging one after another, which have benefited a great number of tumor patients in different degrees. However, there are still many dilemmas in clinical anti-tumor therapy at present, for instance, obvious side effects, tumor resistance and so on. In recent years, the nano drug delivery system with mesoporous silica as the carrier has overcome many flaws of traditional anti-tumor treatment to a certain extent, especially the mesoporous silica nanosystem for controlling reactive oxygen species generation which has excellent tumor targeting property and biocompatibility, and minimal injury effects on normal tissue cells. So it has been regarded as one of the most promising agents in clinical application by playing significant anti-tumor roles through multiple approaches. This paper reviews this kind of potent nanosystem and its application to anti-tumor therapy.

14.
Acta Pharmaceutica Sinica ; (12): 716-726, 2018.
Article in Chinese | WPRIM | ID: wpr-779927

ABSTRACT

Mesoporous silica nanoparticles (MSNs) have been widely used as drug carriers in the diagnosis and treatment of diseases due to their specific characteristics, which include a large surface area, ordered mesoporous structures, easy surface modification and feasible sustained release action for encapsulated drugs. With the research development of MSNs, the biodegradability and removability of mesoporous silica nanomaterials have attracted considerable attention in the clinical application of the MSNs-based formulations. This paper was prepared to emphasize the preparation approaches of biodegradable mesoporous silica nanoparticles through the metal oxide doping method and the organic compound doping method. We discussed the biodegradable mechanism and process of such nanoparticles, and finally, provided an insightful and helpful review of the prospective application of the biodegradable mesoporous silica nanoparticles in medical field.

15.
Biomedical and Environmental Sciences ; (12): 197-207, 2018.
Article in English | WPRIM | ID: wpr-690670

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the subchronic oral toxicity of silica nanoparticles (NPs) and silica microparticles (MPs) in rats and to compare the difference in toxicity between two particle sizes.</p><p><b>METHODS</b>Sprague-Dawley rats were randomly divided into seven groups: the control group; the silica NPs low-, middle-, and high-dose groups; and the silica MPs low-, middle-, and high-dose groups [166.7, 500, and 1,500 mg/(kg•bw•day)]. All rats were gavaged daily for 90 days, and deionized water was administered to the control group. Clinical observations were made daily, and body weights and food consumption were determined weekly. Blood samples were collected on day 91 for measurement of hematology and clinical biochemistry. Animals were euthanized for necropsy, and selected organs were weighed and fixed for histological examination. The tissue distribution of silicon in the blood, liver, kidneys, and testis were determined.</p><p><b>RESULTS</b>There were no toxicologically significant changes in mortality, clinical signs, body weight, food consumption, necropsy findings, and organ weights. Differences between the silica groups and the control group in some hematological and clinical biochemical values and histopathological findings were not considered treatment related. The tissue distribution of silicon was comparable across all groups.</p><p><b>CONCLUSION</b>Our study demonstrated that neither silica NPs nor silica MPs induced toxicological effects after subchronic oral exposure in rats.</p>


Subject(s)
Animals , Female , Male , Rats , Administration, Oral , Dose-Response Relationship, Drug , Nanoparticles , Toxicity , Particle Size , Rats, Sprague-Dawley , Silicon Dioxide , Toxicity , Toxicity Tests, Subchronic
16.
Braz. j. med. biol. res ; 51(3): e6650, 2018. graf
Article in English | LILACS | ID: biblio-889040

ABSTRACT

In the present study, we successfully developed a docetaxel (DTX) and thalidomide (TDD) co-delivery system based on low density lipoprotein (LDL) modified silica nanoparticles (LDL/SLN/DTX/TDD). By employing the tumor homing property of LDL and the drug-loading capability of silica nanoparticles, the prepared LDL/SLN/DTX/TDD was expected to locate and specifically deliver the loaded drugs (DTX and TDD) to achieve effective chemotherapy of liver cancer. In vitro analysis revealed that nano-sized LDL/SLN/DTX/TDD with decent drug loading capabilities was able to increase the delivery efficiency by targeting the low density lipoprotein receptors, which were overexpressed on HepG2 human hepatocellular liver carcinoma cell line, which exerted better cytotoxicity than unmodified silica nanoparticles and free drugs. In vivo imaging and anti-cancer assays also confirmed the preferable tumor-homing and synergetic anti-cancer effects of LDL/SLN/DTX/TDD.


Subject(s)
Humans , Animals , Male , Mice , Thalidomide/administration & dosage , Silicon Dioxide/administration & dosage , Taxoids/administration & dosage , Lipoproteins, LDL/blood , Liver Neoplasms, Experimental/drug therapy , Antineoplastic Agents/administration & dosage , Thalidomide/therapeutic use , Time Factors , Taxoids/therapeutic use , Drug Synergism , Nanoparticles , Hep G2 Cells , Liver Neoplasms, Experimental/blood , Antineoplastic Agents/therapeutic use
17.
Chinese Journal of Analytical Chemistry ; (12): 1467-1474, 2017.
Article in Chinese | WPRIM | ID: wpr-658504

ABSTRACT

As a kind of fluorescent nanoprobe, BHHCT-Eu3+ @ SiO2 fluorescent nanoparticles were synthesized using microwave irradiation. Transmission electron microscopy characterization showed that the nanoparticles were in spherical shape with particle size of about 36 nm. The BHHCT-Eu3+@SiO2 exhibited good fluorescence property, with a maximal excitation wavelength of 343 nm and an maximal emission wavelength of 615 nm. The fluorescence lateral flow immunoassay ( LFIA ) was established for rapid and quantitative detection of kanamycin ( Kana) in milk after BHHCT-Eu3+@SiO2 fluorescent nanoparticles were conjugated with Kana antibody, with dextran as a linker. The limit of detection of Kana with the LFIA method was 0. 85 ng/mL with IC50 of 12. 76 ng/mL, and the detection range was from 3. 0 ng/m to 76 ng/mL. The recoveries of Kana in milk were between 93 . 7% and 97 . 4% with RSD of 3 . 1%-4 . 6%, and cross-reactivity of the fluorescence immunoassay strip for Kana determination was<1%. The detection results of kana in milk samples between the LFIA and traditional ELISA method showed good correlation.

18.
Chinese Journal of Analytical Chemistry ; (12): 1467-1474, 2017.
Article in Chinese | WPRIM | ID: wpr-661423

ABSTRACT

As a kind of fluorescent nanoprobe, BHHCT-Eu3+ @ SiO2 fluorescent nanoparticles were synthesized using microwave irradiation. Transmission electron microscopy characterization showed that the nanoparticles were in spherical shape with particle size of about 36 nm. The BHHCT-Eu3+@SiO2 exhibited good fluorescence property, with a maximal excitation wavelength of 343 nm and an maximal emission wavelength of 615 nm. The fluorescence lateral flow immunoassay ( LFIA ) was established for rapid and quantitative detection of kanamycin ( Kana) in milk after BHHCT-Eu3+@SiO2 fluorescent nanoparticles were conjugated with Kana antibody, with dextran as a linker. The limit of detection of Kana with the LFIA method was 0. 85 ng/mL with IC50 of 12. 76 ng/mL, and the detection range was from 3. 0 ng/m to 76 ng/mL. The recoveries of Kana in milk were between 93 . 7% and 97 . 4% with RSD of 3 . 1%-4 . 6%, and cross-reactivity of the fluorescence immunoassay strip for Kana determination was<1%. The detection results of kana in milk samples between the LFIA and traditional ELISA method showed good correlation.

19.
Chinese Traditional and Herbal Drugs ; (24): 2441-2446, 2016.
Article in Chinese | WPRIM | ID: wpr-853393

ABSTRACT

Objective: To prepare a series of polyethylene (PEG)-modified mesoporous silica nanoparticles (MSNs-PEG) used for danshensu delivery carrier. Methods: By the co-hydrolysis method with silica coupling agent, the content of the azide groups was controlled into MSNs. The structures of MSNs-PEG were characterized by FTIR, XRD, and TEM analyses. The results showed that PEG chains have been grafted on the surface of MSNs. The safety of MSNs-PEG carrier was preliminarily evaluated by MTT, the release rule of MSNs-PEG was investigated by in vitro release experiment. Results: PEG can be effectively and controlled grafted onto MSNs. The MSNs-PEG have the good stability in aqueous solution. The loading rate of MSNs-PEG was higher in the experimental results of danshensu. The drug loading and entrapment efficiency were 6.8 % and 22.8 %. The graft of PEG could change the release of the drug, which could effectively prolong the time of drug release. And with the increase of the amount of PEG (mass fraction), the release time of danshensu could be prolonged effectively. Conclusion: The click chemistry method is easy to control the PEG graft content, and effectively controls the release rate of danshensu.

20.
Journal of China Pharmaceutical University ; (6): 653-658, 2015.
Article in Chinese | WPRIM | ID: wpr-811986

ABSTRACT

@#Mesoporous silica nanoparticle as drug carrier has become the new research focus in the field of nano-drug delivery system in recent years. In this study, paclitaxel-loaded msesoporous silica nanoparticle(PTX@MSN)was manufactured by the solvent adsorption. In vitro studies revealed that PTX@MSN was well dispersed in aqueous medium with particle size of 250 nm, the potential of -(8. 01±1. 81)mV and drug loading efficiency of(23. 76±1. 14)%. PTX@MSN showed the sustained-release characteristics with the cumulative PTX of release(23. 62±2. 15)% at 24 h. In additions, the cytotoxicity investigation indicated that blank MSNs were biocompatible while PTX@MSN group showed improved in vitro anti-tumor activity against HepG2 cell when compared with Taxol group. In conclusion, MSN is a promising platform to build drug delivery systems for tumor therapy.

SELECTION OF CITATIONS
SEARCH DETAIL